

Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

October, 2010

Patrick Fink, NASA
Kevin Hames, Phong Ngo (NASA)
Gary Grobe, Richard Barton (NASA/ESCG)

Background

- A surface analog for wireless infrastructure is under development
- The analog will provide for connectivity between multiple analogs and facilities on site at JSC
 - Wireless Habitat Test Bed
 - Habitat Test Bed (HaT)
 - Habitat Demonstration Unit (HDU)
 - Lunar Electric Rover (LER)
 - Lunar Rock Yard
 - Operations Technology Facility (OTF)
 - Electronic Systems Test Laboratory (ESTL)
- DTN Experimental Network (DEN) permits access and testing by other NASA Centers, DTN Team Members, and protocol developers

Objectives

- Demonstrate DTN for high return applications in lunar scenarios
 - Different data types (video, audio, files, command & control)
- Provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members
- Serve as a wireless communications staging ground for remote analog excursions (e.g., Desert-RATS)
- Enables testing of detailed communication scenarios and long term evaluation of network performance

DTN Lunar Scenarios: Assets & Links

DTN Lunar Scenario: Rover Motion Imagery

DTN Lunar Scenario: Rover Motion Imagery Operations Concept

6-8 HD cameras mounted on each rover

- 1 camera per rover selected as "primary", others "secondary"
 - Rover operators will switch between cameras while driving
 - Second rover may swap motion imagery with first rover
 - Ground operators will select camera(s) for downlink to Earth
- Front camera for navigation and hazard avoidance
 - Need to know where EVA is with respect to rover no vehiclepedestrian accidents
- Side cameras for situational awareness
- Minimum 1 motion imagery stream while under way
- All motion imagery stored locally for later forwarding

Motion Imagery Scenario: DTN Value

- Surface communication infrastructure does not have to support real-time peak loads
- Data is not lost when channels are over-subscribed
- Increased video quality for science, public interest

Motion Imagery Data Flow Rover Communications Stack Diagram

Motion Imagery Scenario at Surface Analog

- Single motion imagery stream to lunar communications terminal (rover collision avoidance Screen 1)
- Second rover video is stored via DTN for later forward (Screen 2)

DTN Lunar Scenario: Voice Transcript/RFID

DTN Lunar Scenario: Voice Transcript/RFID Operations Concept

- EVA traverses up to 100 meters from the rover
- EVA reports geologic setting and conditions on audio channel
 - Audio transcript constitutes part of the scientific record for geologic specimens
 - EVA collects geologic specimens and places in bags
- RFID interrogator captures bag ID
- Audio and specimen ID are transmitted to the rover, which associates a location estimate with the data

Audio/RFID Scenario: DTN Value

- RFID data from the specimen bag, audio transcript, and coordinates are associated with each sample
- All of these constitute part of the scientific record
- Scientific field data is vulnerable to link disruptions along any segment of a multi-hop network
- DTN prevents loss of science

Audio Data Flow EVA Communications Stack Diagram

Audio/RFID Scenario at Surface Analog

DTN Lunar Scenario: Navigation Telemetry

DTN Lunar Scenario: Navigation Telemetry Operations Concept and Value Provided

- Ground crew views tracking telemetry from autonomous robot in habitat proximity
- Tracking telemetry is routed through multi-hop network that is subject to disruptions
 - DTN technology prevents loss of situational awareness data
 - Provides "last known location" and promotes anomaly resolution

DTN Lunar Scenario: Navigation Telemetry Demonstration

Conclusion

- · A surface communication analog is under development
 - Experiments and demonstrations can incorporate multiple Constellation element analogs and facilities
 - DEN connectivity will permit DTN team members access to wireless communication links
 - Three scenarios are targeted for demonstration in FY10
 - Motion imagery
 - Voice and sensor telemetry
 - Navigation telemetry

